Resolution Correction for Surface X-ray Diffraction at High Beam Exit Angles BY C. SCHAMPER, H. L. MEYERHEIM AND W. MORITZ

نویسندگان

  • C. SCHAMPER
  • H. L. MEYERHEIM
چکیده

Owing to the two-dimensional periodicity of a superstructure on the crystal surface, the intensity in reciprocal space is continuously distributed along rods normal to the sample surface. The analysis of rod scans in surface X-ray diffraction provides information about the structure parameters normal to the sample surface. For high resolution to be achieved, the measurements must extend to momentum transfers q± that are as large as possible. At large exit angles, the conventional Lorentz factor must be modified to take account of the finite aperture of the detector and the continuous intensity along the lattice rod. For two types of Z-axis diffractometer used in surface X-ray crystallography, an analytical expression for the resolution correction of rod-scan intensity data has been developed. It takes into account an anisotropic detector resolution T(AO, A~), the finite width of the diffracted beam and the primary-beam divergence 9arallel to the sample surface, Az. The calculation of the convolution functions is simplified by a projection onto the q± = 0 plane. The effects of different detector settings and the influences of the primary-beam divergence and the sample quality on the measured intensity are demonstrated for several examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jahn-Teller stabilization of a "polar" metal oxide surface: Fe3O4(001).

Using ab initio thermodynamics we compile a phase diagram for the surface of Fe3O4(001) as a function of temperature and oxygen pressures. A hitherto ignored polar termination with octahedral iron and oxygen forming a wavelike structure along the [110] direction is identified as the lowest energy configuration over a broad range of oxygen gas-phase conditions. This novel geometry is confirmed v...

متن کامل

Spin reorientation and structural relaxation of atomic layers: pushing the limits of accuracy.

The correlation between an ad-layer-induced spin reorientation transition (SRT) and the ad-layer-induced structural relaxation is investigated by combined in situ surface x-ray diffraction and magneto-optical Kerr-effect experiments on Ni/Fe/Ni(111) layers on W(110). The Fe-induced SRT from in-plane to out-of-plane, and the SRT back to in-plane upon subsequent coverage by Ni, are each accompani...

متن کامل

Structure analysis of thiouracil on Ag(111) and graphite (0001) by x-ray diffraction and scanning tunneling microscopy

The geometric structures of ordered monolayers of large organic molecules (thiouracil) adsorbed to the surface of Ag(111) and graphite (0001) were analyzed using surface x-ray diffraction and scanning tunneling microscopy (STM), respectively. Although the substrates are different, in both cases the molecules are found to be arranged in parallel zig-zag rows. On graphite (0001) the molecules for...

متن کامل

Coverage-dependent adsorption sites for K/Cu( 001) and Cs/Cu( 001) determined by surface X-ray diffraction

Surface X-ray diffraction has been used to analyze in situ the room-temperature adsorption behaviour and the structure of K and Cs on Cu(OO1) at submonolayer coverages. Adsorption of K takes place in fourfold hollow sites up to coverages of about 0.25 monolayers (ML), where 1 ML corresponds to 1.53 X lOI atoms/cm2. At higher coverages the formation of a quasi-hexagonal incommensurate adlayer is...

متن کامل

Surfactant-mediated growth revisited.

The x-ray structure analysis of the oxygen-surfactant-mediated growth of Ni on Cu(001) identifies up to 0.15 monolayers of oxygen in subsurface octahedral sites. This questions the validity of the general view that surfactant oxygen floats on top of the growing Ni film. Rather, the surfactant action is ascribed to an oxygen-enriched zone extending over the two topmost layers. Surface stress mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008